Bidirectional Full-Duplex MIMO Links at LargeSystem Limit

Risto Wichman, Mikko Vehkaperä, and Taneli Riihonen Aalto University School of Electrical Engineering, Finland

IEEE Communication Theory Workshop, May 26, 2014

Introduction

General Topic: Full-Duplex Wireless

- "Full-duplex" wireless communication
= systems where some node(s) may transmit and receive simultaneously on a single frequency band
- Progressive physical/link-layer frequency-reuse concept
$=$ up to double spectral efficiency at system level, if the significant technical problem of self-interference is tackled
- Transmission and reception should use the band for the same amount of time to make the most of full duplex
\triangleright (a)symmetry of traffic pattern, i.e., requested rates in the two simultaneous directions
\triangleright (a)symmetry of channel quality, i.e.,
achieved rates in the two simultaneous directions

Full-Duplex Communication Scenarios

1) Bidirectional communication link between two terminals

- Asymmetric traffic (typically)
- Symmetric channels (roughly)

2) Multihop relay link

- Symmetric traffic
- Asymmetric channels
- Direct link may be useful

3) Simultaneous down- and uplink for two half-duplex users

- Asymmetric traffic
- Asymmetric channels
- Inter-user interference!

Scope: Rate Regions in Two-Way Communication

Transmission rate
from Terminal 1
to Terminal 2

- Bidirectional full-duplex multiantenna (MIMO) link
\triangleright at the large-system limit
\triangleright with asymmetric traffic
\triangleright assuming symmetric setup for numerical results
- Achievable rate regions by controlling
\triangleright spatial multiplexing
\triangleright time sharing
- The analysis is based on the replica method borrowed from statistical physics

Focus: Suppression vs. Cancellation without Tx

Noise

Spatial-domain suppression:

Time-domain cancellation:

- The link needs efficient self-interference mitigation at both ends
\triangleright Suppression: forming eigenbeams to transmit and receive in orthogonal directions ("null-space projection")
\triangleright Cancellation: subtracting the interfering signal before decoder
- Both schemes can eliminate interference, but suppression is possible only at the cost of consuming spatial degrees of freedom

System Model without Tx Noise

Signal Model

- Terminal $i \in\{1,2\}$ has M_{i} transmit and N_{i} receive antennas
- In communication direction $i j \in\{12,21\}$:

$$
\mathbf{y}_{j}=\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i} \mathbf{x}_{i}+\mathbf{G}_{j} \mathbf{H}_{j j} \mathbf{F}_{j} \mathbf{x}_{j}+\mathbf{G}_{j} \mathbf{n}_{j}
$$

\triangleright The link reserves \hat{M}_{i} transmit and \hat{N}_{j} receive streams for spatial multiplexing after self-interference mitigation

- Terminal i does not know $\mathbf{H}_{i j}$ but Terminal j knows $\mathbf{H}_{i j}$ and $\mathbf{H}_{j j}$

Spatial-Domain Suppression

- Suppression exploits the transmit and receive beamforming filters:

$$
\mathbf{F}_{j} \in \mathbb{C}^{M_{j} \times \hat{M}_{j}} \quad \text { and } \quad \mathbf{G}_{j} \in \mathbb{C}^{\hat{N}_{j} \times N_{j}}
$$

\triangleright Orthonormal spatial streams: $\mathbf{F}_{j}^{H} \mathbf{F}_{j}=\mathbf{I}$ and $\mathbf{G}_{j} \mathbf{G}_{j}^{H}=\mathbf{I}$

- Maximum for full-rank $\mathbf{H}_{j j}$ is $\hat{M}_{j}+\hat{N}_{j}=\max \left\{M_{j}, N_{j}\right\}$
- Self-interference is eliminated in Terminal j if $\mathbf{G}_{j} \mathbf{H}_{j j} \mathbf{F}_{j}=\mathbf{0}$
\triangleright Implemented using the SVD of $\mathbf{H}_{j j}$ (for instance)

Time-Domain Cancellation

- Cancellation is based on the subtraction of the interfering signal so that decoder input becomes $\mathbf{y}_{j}-\mathbf{G}_{j} \mathbf{H}_{j j} \mathbf{F}_{j} \mathbf{x}_{j}$
\triangleright Terminal $j \in\{1,2\}$ needs to know its own transmitted signal \mathbf{x}_{j} which is not required with spatial-domain suppression
- All spatial degrees of freedom can be reserved for multiplexing
$\triangleright \hat{M}_{j}=M_{j}, \hat{N}_{j}=N_{j}$ and $\mathbf{F}_{j}=\mathbf{I}, \mathbf{G}_{j}=\mathbf{I}$ in the analysis

Spatial-Division Multiplexing

Spatial-domain suppression:

Time-domain cancellation:

- After mitigation, the signal model is transformed to

$$
\mathbf{y}_{j}=\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i} \mathbf{x}_{i}+\mathbf{G}_{j} \mathbf{n}_{j}, \quad \mathcal{E}\left\{\mathbf{x}_{i} \mathbf{x}_{i}^{H}\right\}=\left(1 / \hat{M}_{i}\right) \mathbf{I}
$$

\triangleright Transmitter side: standard open-loop spatial multiplexing of independent Gaussian streams into x_{i}
\triangleright Receiver side: joint decoding for \mathbf{y}_{j} knowing $\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i} \in \mathbb{C}^{\hat{N}_{j} \times \hat{M}_{i}}$

- Time sharing between different stream configurations in order to make the achievable rate region convex with suppression

Analytical Results

Mutual Information

- We are interested in evaluating the average transmission rate as

$$
R_{i j}=\mathcal{E}\left\{\log \operatorname{det}\left(\mathbf{I}+\frac{1}{\hat{M}_{i}} \mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i}\left(\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i}\right)^{H}\right)\right\}
$$

over the joint distribution of random matrices $\mathbf{G}_{j}, \mathbf{H}_{i j}$, and \mathbf{F}_{i}

- Instead, we begin from the definition of mutual information:

$$
\frac{R_{i j}}{\hat{M}_{i}}=\frac{\mathcal{E}\left\{\log p\left(\mathbf{y}_{j} \mid \mathbf{x}_{i}, \mathbf{G}_{j}, \mathbf{H}_{i j}, \mathbf{F}_{i}\right)\right\}}{\hat{M}_{i}}-\frac{\mathcal{E}\left\{\log \mathbf{E}_{\mathbf{x}_{i}}\left\{p\left(\mathbf{y}_{j} \mid \mathbf{x}_{i}, \mathbf{G}_{j}, \mathbf{H}_{i j}, \mathbf{F}_{i}\right)\right\}\right\}}{\hat{M}_{i}}
$$

where $p(\cdot \mid \cdot)$ is the Gaussian posterior probability

- The above expression can be transformed to

$$
\frac{R_{i j}}{\hat{M}_{i}}=-\frac{\hat{N}_{j}}{\hat{M}_{i}}-\frac{1}{\hat{M}_{i}} \lim _{u \rightarrow 0} \frac{\partial}{\partial u} \log \mathcal{E}\left\{\mathrm{E}_{\mathbf{x}_{i}}\left\{\exp \left(-\left\|\mathbf{y}_{j}-\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i} \mathbf{x}_{i}\right\|^{2}\right)\right\}^{u}\right\}
$$

where the first term is trivial and the second term comes from the identity $\lim _{u \rightarrow 0} \frac{\partial}{\partial u} \log \mathcal{E}\left\{Z^{u}\right\}=\mathcal{E}\{\log Z\}$

Replica Method and Integration

- With $\Delta \mathrm{x}_{a}=\mathrm{x}_{0}-\mathrm{x}_{a}$, the replica trick amounts to evaluating

$$
\frac{R_{i j}}{\hat{M}_{i}}=-\frac{\hat{N}_{j}}{\hat{M}_{i}}-\lim _{\hat{M}_{i} \rightarrow \infty} \frac{1}{\hat{M}_{i}} \lim _{u \rightarrow 0} \frac{\partial}{\partial u} \log \mathcal{E}\left\{\prod_{a=1}^{u} \mathrm{e}^{-\left\|\hat{M}_{i}^{-1 / 2} \mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{F}_{i} \Delta \mathbf{x}_{a}+\mathbf{G}_{j} \mathbf{n}_{j}\right\|^{2}}\right\}
$$

where u is an integer inside log but a real number outside \log (!?)

- After Gaussian integration over \mathbf{n}_{j} and $\mathbf{v}_{a}=\hat{M}_{i}^{-1 / 2} \mathbf{H}_{i j} \mathbf{F}_{i} \Delta \mathbf{x}_{a}$,

$$
\frac{R_{i j}}{\hat{M}_{i}}=-\frac{\hat{N}_{j}}{\hat{M}_{i}}-\lim _{\hat{M}_{i} \rightarrow \infty} \frac{1}{\hat{M}_{i}} \lim _{u \rightarrow 0} \frac{\partial}{\partial u} \log \mathcal{E}\left\{\mathrm{e}^{G\left(\mathbf{Q}, \mathbf{D}_{j}\right)}\right\}
$$

where $\{\mathbf{Q}\}_{a, b}=\frac{1}{M_{i}} \mathbf{x}_{b}^{H} \mathbf{x}_{a}$ and $\mathbf{D}_{j}=\mathbf{T}_{j}^{T} \mathbf{T}_{j}$ is binary and diagonal

- If the limits can be swapped, the saddle-point method implies

$$
\begin{aligned}
& \quad \frac{R_{i j}}{\hat{M}_{i}}=-\frac{\hat{N}_{j}}{\hat{M}_{i}}-\lim _{u \rightarrow 0} \frac{\partial}{\partial u} \lim _{\hat{M}_{i} \rightarrow \infty} \frac{1}{\hat{M}_{i}} \log \mathbf{E}_{\mathbf{D}_{j}}\left\{\exp \left(\hat{M}_{i} \underset{\mathbf{Q}, \tilde{\mathbf{Q}}}{\operatorname{extr}} T\left(\mathbf{Q}, \tilde{\mathbf{Q}}, \mathbf{D}_{j}\right)\right)\right\} \\
& \text { where } T\left(\mathbf{Q}, \tilde{\mathbf{Q}}, \mathbf{D}_{j}\right)=\frac{1}{\hat{M}_{i}} G\left(\mathbf{Q}, \mathbf{D}_{j}\right)-\operatorname{tr}(\mathbf{Q} \tilde{\mathbf{Q}})+\log M(\tilde{\mathbf{Q}})
\end{aligned}
$$

Replica Symmetry Assumption and Extremization

- Before extremization, $T\left(\mathbf{Q}, \tilde{\mathbf{Q}}, \mathbf{D}_{j}\right)$ is transformed by replica symmetry

$$
\left(\mathbf{Q}=\mathbf{I}_{u+1}(p-q)+\mathbf{1}_{(u+1) \times(u+1)} q \quad \text { and } \quad \tilde{\mathbf{Q}}=\mathbf{I}_{u+1}(\tilde{p}-\tilde{q})+\mathbf{1}_{(u+1) \times(u+1)} \tilde{q}\right)
$$

to $T_{u}(p, q, \tilde{p}, \tilde{q})=-u \frac{\hat{N}_{j}}{M_{i}} \log \left(1+\bar{\gamma}_{i j}(p-q)\right)-(u+1)(p \tilde{p}+u q \tilde{q})+\log M(\tilde{\mathbf{Q}})$

- Matrix \mathbf{D}_{j} also disappears and we get a tractable form as

$$
\frac{R_{i j}}{\hat{M}_{i}}=-\lim _{u \rightarrow 0} \frac{\partial}{\partial u} \operatorname{extrt}_{p, q, \tilde{p}, \tilde{q}} T_{u}(p, q, \tilde{p}, \tilde{q})
$$

which matches to the case of an i.i.d. Gaussian $\hat{M}_{i} \times \hat{N}_{j}$ channel

- Finally, we may exploit existing proofs (e.g., by Verdú) to obtain

$$
\frac{R_{i j}}{\hat{M}_{i}} \simeq \log \left(1+\frac{\hat{N}_{j}}{\hat{M}_{i}} \cdot \frac{\bar{\gamma}_{i j}}{1+E}\right)+\frac{\hat{N}_{j}}{\hat{M}_{i}}\left(\log (1+E)-\frac{E}{1+E}\right)
$$

where $E=\bar{\gamma}_{i j}(p-q)$ is a solution to $\frac{\bar{\gamma}_{i j}}{E}=1+\frac{\hat{N}_{j}}{\hat{M}_{i}} \cdot \frac{\bar{\gamma}_{i j}}{1+E}$
\triangleright The achievable transmission rates of the two directions are indirectly coupled via $\hat{M}_{j}+\hat{N}_{j}=\max \left\{M_{j}, N_{j}\right\}$

Numerical Results

Example Setups

- The numerical results concentrate on symmetric systems where
$\triangleright M=M_{1}=M_{2}$
$\triangleright N=N_{1}=N_{2}$
$\triangleright \bar{\gamma}=\bar{\gamma}_{12}=\bar{\gamma}_{21}$
- However, some asymmetry should be taken into account
\triangleright Requested rates may be different in the two directions, reflecting typical downlink/uplink imbalance (R_{12} / R_{21})
\triangleright There may be transmit/receive antenna imbalance (M / N)
- At the large-system limit, M and N grow asymptotically
- In summary, there are three key parameters to explore:
$R_{12} / R_{21} \quad \bar{\gamma} \quad M / N$

Transmission Rate vs. SNR

- When

$$
\begin{aligned}
& \triangleright M=4 \\
& \triangleright N=8
\end{aligned}
$$

a) lines:
asymptotic analytical values projected to this finite case b) markers: accurate simulated values

- The asymptotic results are useful also for not-so-large systems
- Trade-off (indirect coupling) between rates in two directions: When choosing (\hat{M}_{i}, \hat{N}_{j}) as a stream configuration in one direction, the opposite configuration becomes $\left(\hat{M}_{j}, \hat{N}_{i}\right)=\left(8-\hat{N}_{j}, 8-\hat{M}_{i}\right)$

Achievable Rate Regions (1)

- When
$\triangleright M=4$
$\triangleright N=8$
$\triangleright \bar{\gamma}=8 \mathrm{~dB}$
- Varying \hat{M}_{1} and \hat{M}_{2} which sets
$\hat{N}_{1}=8-\hat{M}_{1}$
$\hat{N}_{2}=8-\hat{M}_{2}$
for suppression

- Each stream configuration $\left(\hat{M}_{1}, \hat{M}_{2}\right)$ renders a rectangular region
\triangleright Suppression: 16 different two-way regions and two degenerate cases where data is transmitted in one direction only

Achievable Rate Regions (2)

- When
$\triangleright M=4$
$\triangleright N=8$
$\triangleright \bar{\gamma}=8 \mathrm{~dB}$
- Varying \hat{M}_{1} and \hat{M}_{2} which sets
$\hat{N}_{1}=8-\hat{M}_{1}$
$\hat{N}_{2}=8-\hat{M}_{2}$
for suppression

- The complete rate region is achieved by time sharing between different fixed stream configurations (\hat{M}_{1}, \hat{M}_{2})
\triangleright The convex hull of the union of rectangular rate regions

Achievable Rate Regions (3)

- When
$\triangleright M=4$
$\triangleright N=8$
$\triangleright \bar{\gamma}=8 \mathrm{~dB}$
- Varying continuously \hat{M}_{1} / M and \hat{M}_{2} / M
- Using time sharing when $R_{12} \sim R_{21}$

- Rate region projected from the asymptotic analytical results (dashed line) matches well with the finite-case simulations

Achievable Rate Regions vs. SNR

- When

$$
\begin{aligned}
& \triangleright(M, N)=(4,8) \\
& \qquad \bar{\gamma}=20 \mathrm{~dB} \\
& \quad=15 \mathrm{~dB} \\
& \quad=10 \mathrm{~dB} \\
& \quad=5 \mathrm{~dB} \\
& \quad=0 \mathrm{~dB} \\
& \quad=-5 \mathrm{~dB}
\end{aligned}
$$

- The absolute rates increase with the SNR value, as expected, but otherwise it affects only slightly the shape of rate regions
- Asymmetric traffic can be supported without time sharing

Achievable Rate Regions vs. Antenna Imbalance

- When

$$
\begin{aligned}
& \triangleright(M, N)=(8,8) \\
&=(4,8) \\
&=(8,4) \\
&=(4,4) \\
& \triangleright \bar{\gamma}=12 \mathrm{~dB}
\end{aligned}
$$

- Transmit/receive antenna imbalance (M / N) affects significantly the shape of the rate regions with spatial-domain suppression
- The rate region of suppression is always inside that of cancellation

Suppression vs. Cancellation (SNR)

- SNR defines whether the performance is limited by transmit-side multiplexing gain or receive-side array gain
- Worst case: equal number of transmit and receive antennas

Suppression vs. Cancellation (Antenna Imbalance)

- Transmit/receive antenna imbalance is a critical factor when characterizing the rate loss of suppression versus cancellation
- Having more transmit antennas than receive antennas is preferred

Transmitter Noise and M(ism)atched Decoding

Transmitter Noise and M(ism)atched Decoding

- Unknown transmit-side noise due to analog imperfections
\triangleright nonlinear distortion, e.g., power amplifier (PA)
\triangleright measured with EVM
- Feedback transmit-side noise may be on a par with the far-end signal due to the high gain of the near-end interference channel
\triangleright Feedforward transmit-side noise can be neglected since it is typically below receive-side noise after channel attenuation
- Mitigation transparently around the actual multiplexing protocol which can operate without being aware of self-interference
\triangleright Mismatched detection and decoding due to unexpected noise

Focus: Self-interference Mitigation with Tx Noise

Spatial-domain suppression:

Time-domain cancellation:

- The link needs efficient self-interference mitigation at both ends
\triangleright Suppression: receiving only in the null space of interference
\triangleright Cancellation: subtracting the interfering signal before decoder
- Both can eliminate the data-dependent part of self-interference
- Suppression eliminates also the self-induced transmit-side noise, at the cost of consuming some spatial degrees of freedom

System Model with Tx Noise

Signal Model

- Terminal $i \in\{1,2\}$ has M_{i} transmit and N_{i} receive antennas
- In communication direction $i j \in\{12,21\}$:

$$
\mathbf{y}_{j}=\mathbf{G}_{j} \mathbf{H}_{i j}\left(\mathbf{x}_{i}+\boldsymbol{m}_{i}\right)+\mathbf{G}_{j} \mathbf{H}_{j j}\left(\mathbf{x}_{j}+\boldsymbol{m}_{j}\right)+\mathbf{G}_{j} \mathbf{n}_{j}
$$

\triangleright noise terms \boldsymbol{m}_{i} and \boldsymbol{m}_{j} due to transmitter imperfections
$\triangleright \hat{N}_{j}$ receive streams remain after self-interference mitigation

- Terminal i does not know $\mathbf{H}_{i j}$ but Terminal j knows $\mathbf{H}_{i j}$ and $\mathbf{H}_{j j}$

Spatial-Domain Suppression

- In Terminal $j \in\{1,2\}$ after suppression using \mathbf{G}_{j} of rank \hat{N}_{j} :

$$
\mathbf{y}_{j}=\mathbf{G}_{j}(\mathbf{H}_{i j} \mathbf{x}_{i}+\underbrace{\mathbf{H}_{i j} \boldsymbol{m}_{i}}_{\approx \mathbf{0}})+\underbrace{\mathbf{G}_{j} \mathbf{H}_{j j}\left(\mathbf{x}_{j}+\boldsymbol{m}_{j}\right)}_{\text {eliminated when } \mathbf{G}_{j} \mathbf{H}_{j j}=\mathbf{0}}+\mathbf{G}_{j} \mathbf{n}_{j}
$$

- $\hat{N}_{j}=N_{j}-M_{j}$ if $\mathbf{H}_{j j}$ has full rank, thus requiring $N_{j}>M_{j}$
- When enclosing any conventional (e.g., half-duplex) transceiver by transparent suppression, it still performs matched decoding

Time-Domain Cancellation

- In Terminal $j \in\{1,2\}$ after cancellation presuming $\mathbf{G}_{j}=\mathbf{I}$:

$$
\mathbf{y}_{j}=\mathbf{H}_{i j} \mathbf{x}_{i}+\underbrace{\mathbf{H}_{i j} \boldsymbol{m}_{i}}_{\approx \mathbf{0}}+\underbrace{\mathbf{H}_{j j} \mathbf{x}_{j}}_{\text {eliminated }}+\mathbf{H}_{j j} \underbrace{\boldsymbol{m}_{j}}_{\text {unknown! }}+\mathbf{n}_{j}
$$

- $\hat{N}_{j}=N_{j}$, i.e., all degrees of freedom are saved for data reception
- Conventional receivers may adapt imperfectly to the presence of unexpected transmitter noise, leading to mismatched decoding

Analytical Results

Problem Statement

- "Unified" signal model: $\mathbf{y}_{j} \simeq \mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{x}_{i}+\boldsymbol{w}_{j}$ where $\boldsymbol{w}_{j}=\mathbf{G}_{j} \mathbf{H}_{j j} \boldsymbol{m}_{j}+\mathbf{G}_{j} \mathbf{n}_{j}$ with $\boldsymbol{R}_{\boldsymbol{w}_{j}}=\frac{\sigma_{j}^{2}}{M_{j}} \mathbf{G}_{j} \mathbf{H}_{j j} \mathbf{H}_{j j}^{H} \mathbf{G}_{j}^{H}+\mathbf{I}$

1. Matched decoding uses the true density $p\left(\mathbf{y}_{j} \mid \mathbf{x}_{i}, \mathcal{H}_{i j}\right)$
2. Mismatched decoding estimates $\boldsymbol{R}_{\boldsymbol{w}_{j}}$ as $\tilde{\boldsymbol{R}}_{\boldsymbol{w}_{j}}$ and uses a postulated density $q\left(\mathbf{y}_{j} \mid \mathbf{x}_{i}, \mathcal{H}_{i j}\right)$

- Generalized mutual information (GMI) is defined as

$$
I_{\mathrm{gmi}}\left(\mathbf{y}_{j} ; \mathbf{x}_{i}\right)=\sup _{s>0} I_{\mathrm{gmi}}^{(s)}\left(\mathbf{y}_{j} ; \mathbf{x}_{i}\right)=\sup _{s>0}\left(\mathrm{E} \ln q\left(\mathbf{y}_{j} \mid \mathbf{x}_{i}, \mathcal{H}_{i j}\right)^{s}-\mathrm{E} \ln q^{(s)}\left(\mathbf{y}_{j} \mid \mathcal{H}_{i j}\right)\right)
$$

where $q^{(s)}\left(\mathbf{y}_{j} \mid \mathcal{H}_{i j}\right)=\mathrm{E}_{\mathbf{x}_{i}} q\left(\mathbf{y}_{j} \mid \mathbf{x}_{i}, \mathcal{H}_{i j}\right)^{s}$

- The first term is easy to calculate, yielding

$$
I_{\mathrm{gmi}}^{(s)}\left(\mathbf{y}_{j} ; \mathbf{x}_{i}\right)=\left(c-s \mathrm{E} \operatorname{tr}\left(\tilde{\boldsymbol{R}}_{\boldsymbol{w}_{j}}^{-1} \boldsymbol{R}_{\boldsymbol{w}_{j}}\right)\right)-\mathrm{E} \ln q^{(s)}\left(\mathbf{y}_{j} \mid \mathcal{H}_{i j}\right)
$$

while the second term needs special tricks as follows

Replica Analysis

- Instead of trying direct calculation, let us take a different route and start by reformulating the difficult term as

$$
\mathrm{E} \ln q^{(s)}\left(\mathbf{y}_{j} \mid \mathcal{H}_{i j}\right)=c+\lim _{u \rightarrow 0} \frac{\partial}{\partial u} \ln \mathrm{E} Z\left(\mathbf{y}_{j}, \mathcal{H}_{i j} ; s\right)^{u}
$$

where $Z\left(\mathbf{y}_{j}, \mathcal{H}_{i j} ; s\right)=\mathrm{E}_{\mathbf{x}_{i}} \mathrm{e}^{-\left(\mathbf{y}_{j}-\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{x}_{i}\right)^{H} s \tilde{\boldsymbol{R}}_{\boldsymbol{w}_{j}}^{-1}\left(\mathbf{y}_{j}-\mathbf{G}_{j} \mathbf{H}_{i j} \mathbf{x}_{i}\right)}$

- To circumvent the problem of u being real-valued, the replica trick then postulates

$$
Z\left(\mathbf{x}_{0}, \boldsymbol{w}_{j}, \mathcal{H}_{i j} ; s\right)^{u}=\mathrm{E}_{\left\{\mathbf{x}_{a}\right\}_{a=1}^{u}} \prod_{a=1}^{u} \mathrm{e}^{-\left[\boldsymbol{w}_{j}+\mathbf{G}_{j} \mathbf{H}_{i j}\left(\mathbf{x}_{0}-\mathbf{x}_{a}\right)\right]^{H} s \tilde{\boldsymbol{R}}_{w_{j}}^{-1}\left[\boldsymbol{w}_{j}+\mathbf{G}_{j} \mathbf{H}_{i j}\left(\mathbf{x}_{0}-\mathbf{x}_{a}\right)\right]}
$$

where \mathbf{x}_{0} and $\left\{\mathbf{x}_{a}\right\}_{a=1}^{u}$ denote the original and replicated vectors

- If we manage to assess the above expectation as a function of u when matrix dimensions in $\mathcal{H}_{i j}$ grow without bound with fixed ratios, analytically continuing $u \rightarrow 0$ recovers the per-stream GMI as

$$
\frac{1}{M} I_{\mathrm{gmi}}^{(s)}\left(\mathbf{y}_{j} ; \mathbf{x}_{i}\right)=-\frac{s}{M} \mathrm{E} \operatorname{tr}\left(\tilde{\boldsymbol{R}}_{\boldsymbol{w}_{j}}^{-1} \boldsymbol{R}_{\boldsymbol{w}_{j}}\right)-\lim _{M \rightarrow \infty} \frac{1}{M} \lim _{u \rightarrow 0} \frac{\partial}{\partial u} \ln \mathrm{E} Z\left(\mathbf{x}_{0}, \boldsymbol{w}_{j}, \mathcal{H}_{i j} ; s\right)^{u}
$$

Matched Decoding: Per-stream Achievable Rate

- When $\mathbf{H}_{i j}$ and $\mathbf{H}_{j j}$ are i.i.d. Gaussian with gains $\bar{\gamma}_{i j}$ and $\bar{\gamma}_{j j}$ and the receiver adapts perfectly to residual self-interference:

$$
\frac{R_{i j}}{M_{i}}=\ln \left(1+\eta_{i j}\right)-\frac{\eta_{i j}}{1+\eta_{i j}}+\frac{1}{\alpha_{i j}}\left[I\left(\alpha_{j j}, \bar{\gamma}_{j j} \sigma_{j}^{2} ; 1+\frac{\bar{\gamma}_{i j}}{1+\eta_{i j}}\right)-I\left(\alpha_{j j}, \bar{\gamma}_{j j} \sigma_{j}^{2} ; 1\right)\right]
$$

for which the fixed-point $\eta_{i j}$ is found numerically by iterating

$$
\eta_{i j}=\frac{\bar{\gamma}_{i j}}{\alpha_{i j}}\left[\frac{1}{1+\frac{\bar{\gamma}_{i j}}{1+\eta_{i j}}}-\frac{\alpha_{i i}}{4 \bar{\gamma}_{j j} \sigma_{j}^{2}} \mathcal{F}\left(\frac{\bar{\gamma}_{j j} \sigma_{j}^{2}}{\alpha_{i i}} \cdot \frac{1}{1+\frac{\bar{\gamma}_{i j}}{1+\eta_{i j}}}, \alpha_{i i}\right)\right]
$$

and the auxiliary functions are given by

$$
\begin{gathered}
\mathcal{F}(x, \beta)=\left(\sqrt{x(1+\sqrt{\beta})^{2}+1}-\sqrt{x(1-\sqrt{\beta})^{2}+1}\right)^{2} \\
I\left(\beta, \sigma^{2} ; t\right)=\ln t+\beta \ln \left[1+\frac{\sigma^{2}}{t \beta}-\frac{1}{4} \mathcal{F}\left(\frac{\sigma^{2}}{t \beta}, \beta\right)\right]+\ln \left[1+\frac{\sigma^{2}}{t}-\frac{1}{4} \mathcal{F}\left(\frac{\sigma^{2}}{t \beta}, \beta\right)\right]-\frac{t \beta}{4 \sigma^{2}} \mathcal{F}\left(\frac{\sigma^{2}}{t \beta}, \beta\right)
\end{gathered}
$$

- N.B.: This result is for cancellation only

Mismatched Decoding: Per-stream Achievable Rate

- When $\mathbf{H}_{i j}$ and $\mathbf{H}_{j j}$ are i.i.d. Gaussian with gains $\bar{\gamma}_{i j}$ and $\bar{\gamma}_{j j}$ and the receiver postulates imperfectly $\tilde{\boldsymbol{R}}_{\boldsymbol{w}_{j}}=\left(1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}\right) \mathbf{I}_{N}$:

$$
\frac{R_{i j}}{M_{i}}=-\frac{s\left(1+\bar{\gamma}_{j j} \sigma_{j}^{2}\right)}{\alpha_{i j}\left(1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}+s \tilde{E}_{i j}\right)} \cdot \frac{s \tilde{E}_{i j}}{1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}}+\ln \left(1+\frac{s \bar{\gamma}_{i j}}{\alpha_{i j}\left(1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}+s \tilde{E}_{i j}\right)}\right)+\frac{1}{\alpha_{i j}} \ln \left(1+\frac{s \tilde{E}_{i j}}{1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}}\right)
$$

where $\tilde{E}_{i j}$ is directly given as

$$
\tilde{E}_{i j}=\frac{s \bar{\gamma}_{i j}-\left(1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}\right)}{2 s}-\frac{\bar{\gamma}_{i j}}{2 \alpha_{i j}}+\sqrt{\frac{\left(1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}\right) \bar{\gamma}_{i j}}{s}+\left(\frac{s \bar{\gamma}_{i j}-\left(1+\bar{\gamma}_{j j} \tilde{\sigma}_{j}^{2}\right)}{2 s}-\frac{\bar{\gamma}_{i j}}{2 \alpha_{i j}}\right)^{2}}
$$

\triangleright the case of $\tilde{\sigma}_{j}^{2}=0$ is illustrated in the numerical examples
\triangleright asymptotic result at large-system limit: $M_{i} \rightarrow \infty$ and $N_{j} \rightarrow \infty$ while $\frac{M_{i}}{N_{j}} \rightarrow \alpha_{i j}$ for all $i, j \in\{1,2\}$ (like in the previous slide)

- Optimization is required for the parameter s though, in order to find more tight lower bounds for the maximum achievable rate

Numerical Examples

Example Setups

- The numerical results concentrate on symmetric systems where
$\triangleright M=M_{1}=M_{2}$
$\triangleright N=N_{1}=N_{2}$
$\triangleright \bar{\gamma}=\bar{\gamma}_{12}=\bar{\gamma}_{21}$
$\triangleright \bar{\gamma}_{\mathrm{I}}=\bar{\gamma}_{11}=\bar{\gamma}_{22}$
$\triangleright \sigma^{2}=\sigma_{1}^{2}=\sigma_{2}^{2}$
- There may be transmit/receive antenna imbalance (M / N)
\triangleright Yet M and N grow asymptotically at the large-system limit
- Choice $\sigma^{2}=0.001$ corresponds to transmitter EVM of -30 dB (or equivalently 3.2%) which is a practical but slightly optimistic value
- In summary, there are three key parameters to explore:

$\bar{\gamma}$	$\bar{\gamma}_{I}$	M / N

Achievable Rates vs. SNR (Fig. 2)

(a) $M=4, N=8, \bar{\gamma}_{I}=33 \mathrm{~dB}$

(b) $M=4, N=6, \bar{\gamma}_{\mathrm{I}}=39 \mathrm{~dB}$

- Simulations (markers) corroborate analytical results (solid lines)
(a) when $M / N \leq 1 / 2$, suppression reduces receive array gain
(b) when $M / N>1 / 2$, suppression reduces multiplexing order

Achievable Rates vs. SNR, Discrete Modulation

(a) $M=4, N=8, \bar{\gamma}_{\mathrm{I}}=33 \mathrm{~dB}$

(b) $M=4, N=6, \bar{\gamma}_{\mathrm{I}}=39 \mathrm{~dB}$

Matched Decoding: Suppression vs. Cancellation [\%]

(a) $M / N=1 / 2$

(b) $M / N=2 / 3$

- Suppression is worse than cancellation if matched decoding is still feasible under residual self-interference, since such receivers already comprise ideal interference and noise control

Mismatched Decoding: Suppression vs. Cancellation [\%]

(a) $M / N=1 / 2$

(b) $M / N=2 / 3$

- Transmitter noise and mismatched decoding cause an intricate interplay between the parameters corresponding to the channel gains of the data and self-interference links and the antenna ratio

Mismatched Decoding: Switching Boundaries

- Suppression becomes preferred in wide SNR range when the number of receive antennas vs. transmit antennas is large
- The level of self-interference is a significant factor at low SNR

Conclusion

Conclusion

- Achievable rates in bidirectional full-duplex link
- Comparison of spatial suppression and subtractive cancellation
\triangleright for characterizing the cost and benefit of allocating a part of spatial degrees of freedom for self-interference mitigation
\triangleright Trade-off between reduced multiplexing order or array gain and residual self-interference
- Mismatched decoding due to transmitter imperfections
- Analysis at the large-system limit based on the replica method
\triangleright Monte Carlo simulations with small number of antennas match well with the corresponding asymptotic results

Aalto University School of Electrical Engineering

