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General Topic: Full-Duplex Wireless
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• “Full-duplex” wireless communication

= systems where some node(s) may transmit and
receive simultaneously on a single frequency band

• Progressive physical/link-layer frequency-reuse concept

= up to double spectral efficiency at system level, if the
significant technical problem of self-interference is tackled

• Transmission and reception should use the band for the same
amount of time to make the most of full duplex

⊲ (a)symmetry of traffic pattern, i.e.,
requested rates in the two simultaneous directions

⊲ (a)symmetry of channel quality, i.e.,
achieved rates in the two simultaneous directions



Full-Duplex Communication Scenarios
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Source Destination

Downlink user Uplink user

Relay

Terminal 1 Terminal 2

Access point

1) Bidirectional communication
link between two terminals

• Asymmetric traffic (typically)
• Symmetric channels (roughly)

2) Multihop relay link
• Symmetric traffic
• Asymmetric channels
• Direct link may be useful

3) Simultaneous down- and uplink
for two half-duplex users

• Asymmetric traffic
• Asymmetric channels
• Inter-user interference!



Scope: Rate Regions in Two-Way Communication
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Terminal 1 Terminal 2

Transmission rate
from Terminal 1

to Terminal 2

Transmission rate
from Terminal 2

to Terminal 1

By-product from diagonal:
end-to-end rate in

decode-and-forward
relay link

• Bidirectional full-duplex
multiantenna (MIMO) link

⊲ at the large-system limit
⊲ with asymmetric traffic
⊲ assuming symmetric setup

for numerical results

• Achievable rate regions
by controlling

⊲ spatial multiplexing
⊲ time sharing

• The analysis is based on
the replica method borrowed
from statistical physics



Focus: Suppression vs. Cancellation without Tx
Noise
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Spatial-domain suppression:

enc.

dec.

filter

filter

Time-domain cancellation:

enc.

dec.

filter

• The link needs efficient self-interference mitigation at both ends
⊲ Suppression: forming eigenbeams to transmit and receive

in orthogonal directions (“null-space projection”)
⊲ Cancellation: subtracting the interfering signal before decoder

• Both schemes can eliminate interference, but suppression is
possible only at the cost of consuming spatial degrees of freedom



System Model without Tx Noise
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Signal Model
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Terminal 1 Terminal 2

F1

F2

H12

H21

H11 H22

G1

G2x1

x2y1

y2

n1

n2

• Terminal i ∈ {1, 2} has Mi transmit and Ni receive antennas
• In communication direction ij ∈ {12, 21}:

yj = GjHijFixi +GjHjjFjxj +Gjnj

⊲ The link reserves M̂i transmit and N̂j receive streams
for spatial multiplexing after self-interference mitigation

• Terminal i does not know Hij but Terminal j knows Hij and Hjj



Spatial-Domain Suppression
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Terminal 1 Terminal 2

F1

F2

H12

H21G1

G2x1

x2y1

y2

n1

n2

• Suppression exploits the transmit and receive beamforming filters:
Fj ∈ C

Mj×M̂j and Gj ∈ C
N̂j×Nj

⊲ Orthonormal spatial streams: FH
j Fj = I and GjG

H
j = I

− Maximum for full-rank Hjj is M̂j + N̂j = max{Mj , Nj}

• Self-interference is eliminated in Terminal j if GjHjjFj = 0

⊲ Implemented using the SVD of Hjj (for instance)



Time-Domain Cancellation
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Terminal 1 Terminal 2

H12

H21

x1

x2y1

y2

n1

n2

• Cancellation is based on the subtraction of the interfering signal
so that decoder input becomes yj −GjHjjFjxj

⊲ Terminal j ∈ {1, 2} needs to know its own transmitted signal xj

which is not required with spatial-domain suppression

• All spatial degrees of freedom can be reserved for multiplexing

⊲ M̂j = Mj , N̂j = Nj and Fj = I, Gj = I in the analysis



Spatial-Division Multiplexing
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Spatial-domain suppression:

Terminal 1 Terminal 2

F1

F2

H12

H21G1

G2x1

x2y1

y2

n1

n2

Time-domain cancellation:

Terminal 1 Terminal 2

H12

H21

x1

x2y1

y2

n1

n2

• After mitigation, the signal model is transformed to

yj = GjHijFixi +Gjnj , E{xix
H
i } = (1/M̂i) I

⊲ Transmitter side: standard open-loop spatial multiplexing
of independent Gaussian streams into xi

⊲ Receiver side: joint decoding for yj knowing GjHijFi ∈ C
N̂j×M̂i

• Time sharing between different stream configurations in order
to make the achievable rate region convex with suppression



Analytical Results
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Mutual Information
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• We are interested in evaluating the average transmission rate as

Rij = E{log det(I+
1

M̂i

GjHijFi(GjHijFi)
H)}

over the joint distribution of random matrices Gj , Hij , and Fi

• Instead, we begin from the definition of mutual information:
Rij

M̂i

=
E{log p(yj | xi,Gj ,Hij ,Fi)}

M̂i

−
E{log Exi{p(yj | xi,Gj ,Hij ,Fi)}}

M̂i

where p(· | ·) is the Gaussian posterior probability
• The above expression can be transformed to

Rij

M̂i

= −
N̂j

M̂i

−
1

M̂i

lim
u→0

∂

∂u
log E{Exi{exp(−‖yj −GjHijFixi‖

2)}u}

where the first term is trivial and the second term comes
from the identity limu→0

∂
∂u

log E{Zu} = E{logZ}



Replica Method and Integration
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• With ∆xa = x0 − xa, the replica trick amounts to evaluating

Rij

M̂i

= −
N̂j

M̂i

− lim
M̂i→∞

1

M̂i

lim
u→0

∂

∂u
log E{

u
∏

a=1

e−‖M̂
−1/2
i GjHijFi∆xa+Gjnj‖

2

}

where u is an integer inside log but a real number outside log (!?)
• After Gaussian integration over nj and va = M̂

−1/2
i HijFi∆xa,

Rij

M̂i

= −
N̂j

M̂i

− lim
M̂i→∞

1

M̂i

lim
u→0

∂

∂u
log E{eG(Q,Dj)}

where {Q}a,b =
1

M̂i
xH
b xa and Dj = TT

j Tj is binary and diagonal
• If the limits can be swapped, the saddle-point method implies

Rij

M̂i

= −
N̂j

M̂i

− lim
u→0

∂

∂u
lim

M̂i→∞

1

M̂i

log EDj{exp(M̂i extr
Q,Q̃

T (Q, Q̃,Dj))}

where T (Q, Q̃,Dj) =
1

M̂i
G(Q,Dj)− tr(QQ̃) + logM(Q̃)



Replica Symmetry Assumption and Extremization
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• Before extremization, T (Q, Q̃,Dj) is transformed by replica symmetry
(Q = Iu+1(p− q) + 1(u+1)×(u+1)q and Q̃ = Iu+1(p̃− q̃) + 1(u+1)×(u+1)q̃)

to Tu(p, q, p̃, q̃) = −u
N̂j

M̂i
log(1 + γ̄ij(p− q))− (u+ 1)(pp̃+ uqq̃) + logM(Q̃)

• Matrix Dj also disappears and we get a tractable form as
Rij

M̂i

= − lim
u→0

∂

∂u
extr
p,q,p̃,q̃

Tu(p, q, p̃, q̃)

which matches to the case of an i.i.d. Gaussian M̂i × N̂j channel
• Finally, we may exploit existing proofs (e.g., by Verdú) to obtain

Rij

M̂i

≃ log

(

1 +
N̂j

M̂i

·
γ̄ij

1 + E

)

+
N̂j

M̂i

(

log(1 + E)−
E

1 + E

)

where E = γ̄ij(p− q) is a solution to γ̄ij
E

= 1 +
N̂j

M̂i

·
γ̄ij

1 + E

⊲ The achievable transmission rates of the two directions
are indirectly coupled via M̂j + N̂j = max{Mj , Nj}



Numerical Results
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Example Setups
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• The numerical results concentrate on symmetric systems where

⊲ M = M1 = M2

⊲ N = N1 = N2

⊲ γ̄ = γ̄12 = γ̄21

• However, some asymmetry should be taken into account

⊲ Requested rates may be different in the two directions,
reflecting typical downlink/uplink imbalance (R12/R21)

⊲ There may be transmit/receive antenna imbalance (M/N )
− At the large-system limit, M and N grow asymptotically

• In summary, there are three key parameters to explore:

R12/R21 γ̄ M/N



Transmission Rate vs. SNR
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• When

⊲ M = 4
⊲ N = 8

a) lines:
asymptotic analytical values
projected to this finite case
b) markers:
accurate simulated values −10 −5 0 5 10 15 20 25
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M̂i = 4, N̂j = 8 (cancellation)
M̂i = 4, N̂j = 6 (suppression)
M̂i = 4, N̂j = 4 (suppression)
M̂i = 3, N̂j = 5 (suppression)
M̂i = 2, N̂j = 6 (suppression)
M̂i = 2, N̂j = 4 (suppression)

• The asymptotic results are useful also for not-so-large systems
• Trade-off (indirect coupling) between rates in two directions:

When choosing (M̂i, N̂j) as a stream configuration in one direction,
the opposite configuration becomes (M̂j , N̂i) = (8− N̂j , 8− M̂i)



Achievable Rate Regions (1)
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• When

⊲ M = 4
⊲ N = 8
⊲ γ̄ = 8dB

• Varying M̂1 and M̂2

which sets
N̂1 = 8− M̂1

N̂2 = 8− M̂2
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• Each stream configuration (M̂1, M̂2) renders a rectangular region
⊲ Suppression: 16 different two-way regions and two degenerate

cases where data is transmitted in one direction only



Achievable Rate Regions (2)
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• When

⊲ M = 4
⊲ N = 8
⊲ γ̄ = 8dB

• Varying M̂1 and M̂2

which sets
N̂1 = 8− M̂1

N̂2 = 8− M̂2
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• The complete rate region is achieved by time sharing
between different fixed stream configurations (M̂1, M̂2)

⊲ The convex hull of the union of rectangular rate regions



Achievable Rate Regions (3)
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• When

⊲ M = 4
⊲ N = 8
⊲ γ̄ = 8dB

• Varying continuously
M̂1/M and M̂2/M

• Using time sharing
when R12 ∼ R21
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• Rate region projected from the asymptotic analytical results
(dashed line) matches well with the finite-case simulations



Achievable Rate Regions vs. SNR
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• When

⊲ (M,N) = (4, 8)
⊲ γ̄ = 20dB

= 15dB
= 10dB
= 5dB
= 0dB
=−5dB
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• The absolute rates increase with the SNR value, as expected,
but otherwise it affects only slightly the shape of rate regions

• Asymmetric traffic can be supported without time sharing



Achievable Rate Regions vs. Antenna Imbalance
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• When

⊲ (M,N) = (8, 8)
= (4, 8)
= (8, 4)
= (4, 4)

⊲ γ̄ = 12dB
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• Transmit/receive antenna imbalance (M/N ) affects significantly
the shape of the rate regions with spatial-domain suppression

• The rate region of suppression is always inside that of cancellation



Suppression vs. Cancellation (SNR)
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• SNR defines whether the performance is limited by
transmit-side multiplexing gain or receive-side array gain

• Worst case: equal number of transmit and receive antennas



Suppression vs. Cancellation (Antenna Imbalance)
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• Transmit/receive antenna imbalance is a critical factor when
characterizing the rate loss of suppression versus cancellation

• Having more transmit antennas than receive antennas is preferred



Transmitter Noise and M(ism)atched Decoding
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Transmitter Noise and M(ism)atched Decoding
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distortion
• Unknown transmit-side noise

due to analog imperfections
⊲ nonlinear distortion,

e.g., power amplifier (PA)
⊲ measured with EVM

• Feedback transmit-side noise may be on a par with the far-end
signal due to the high gain of the near-end interference channel

⊲ Feedforward transmit-side noise can be neglected since it is
typically below receive-side noise after channel attenuation

• Mitigation transparently around the actual multiplexing protocol
which can operate without being aware of self-interference

⊲ Mismatched detection and decoding due to unexpected noise



Focus: Self-interference Mitigation with Tx Noise
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Spatial-domain suppression:

enc.

dec. filter

noise

Time-domain cancellation:

enc.

dec.

filter

noise

• The link needs efficient self-interference mitigation at both ends
⊲ Suppression: receiving only in the null space of interference
⊲ Cancellation: subtracting the interfering signal before decoder

• Both can eliminate the data-dependent part of self-interference
• Suppression eliminates also the self-induced transmit-side noise,

at the cost of consuming some spatial degrees of freedom



System Model with Tx Noise
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Signal Model
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Terminal 1 Terminal 2

H12

H21

H11 H22

G1

G2x1

x2y1

y2

n1

n2m1

m2

• Terminal i ∈ {1, 2} has Mi transmit and Ni receive antennas
• In communication direction ij ∈ {12, 21}:

yj = GjHij(xi +mi) +GjHjj(xj +mj) +Gjnj

⊲ noise terms mi and mj due to transmitter imperfections
⊲ N̂j receive streams remain after self-interference mitigation

• Terminal i does not know Hij but Terminal j knows Hij and Hjj



Spatial-Domain Suppression
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Terminal 1 Terminal 2

H12

H21G1

G2x1

x2y1

y2

n1

n2

• In Terminal j ∈ {1, 2} after suppression using Gj of rank N̂j :

yj = Gj(Hijxi +Hijmi
︸ ︷︷ ︸

≈0

) +GjHjj(xj +mj)
︸ ︷︷ ︸

eliminated when GjHjj=0

+Gjnj

• N̂j = Nj −Mj if Hjj has full rank, thus requiring Nj > Mj

• When enclosing any conventional (e.g., half-duplex) transceiver
by transparent suppression, it still performs matched decoding



Time-Domain Cancellation
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Terminal 1 Terminal 2

H12

H21

H11 H22

x1

x2y1

y2

n1

n2

m1

m2

• In Terminal j ∈ {1, 2} after cancellation presuming Gj = I:

yj = Hijxi +Hijmi
︸ ︷︷ ︸

≈0

+Hjjxj
︸ ︷︷ ︸

eliminated

+Hjjmj
︸︷︷︸

unknown!

+nj

• N̂j = Nj , i.e., all degrees of freedom are saved for data reception
• Conventional receivers may adapt imperfectly to the presence of

unexpected transmitter noise, leading to mismatched decoding



Analytical Results
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Problem Statement
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• “Unified” signal model: yj ≃ GjHijxi +wj

where wj = GjHjjmj +Gjnj with Rwj =
σ2
j

Mj
GjHjjH

H
jjG

H
j + I

1. Matched decoding uses the true density p(yj | xi,Hij)
2. Mismatched decoding estimates Rwj as R̃wj

and uses a postulated density q(yj | xi,Hij)

• Generalized mutual information (GMI) is defined as

Igmi(yj ; xi) = sup
s>0

I
(s)
gmi(yj ; xi) = sup

s>0

(

E ln q(yj | xi,Hij)
s − E ln q(s)(yj | Hij)

)

where q(s)(yj | Hij) = Exiq(yj | xi,Hij)
s

• The first term is easy to calculate, yielding

I
(s)
gmi(yj ; xi) =

(

c− sE tr(R̃−1
wj

Rwj )
)

− E ln q(s)(yj | Hij),

while the second term needs special tricks as follows



Replica Analysis
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• Instead of trying direct calculation, let us take a different route
and start by reformulating the difficult term as

E ln q(s)(yj | Hij) = c+ lim
u→0

∂

∂u
lnEZ(yj ,Hij ; s)

u

where Z(yj ,Hij ; s) = Exie
−(yj−GjHijxi)

HsR̃−1
wj

(yj−GjHijxi)

• To circumvent the problem of u being real-valued,
the replica trick then postulates

Z(x0,wj ,Hij ; s)
u = E{xa}

u
a=1

u
∏

a=1

e
−[wj+GjHij(x0−xa)]

HsR̃−1
wj

[wj+GjHij(x0−xa)]

where x0 and {xa}
u
a=1 denote the original and replicated vectors

• If we manage to assess the above expectation as a function of u
when matrix dimensions in Hij grow without bound with fixed ratios,
analytically continuing u → 0 recovers the per-stream GMI as
1

M
I
(s)
gmi(yj ; xi) = −

s

M
E tr(R̃−1

wj
Rwj )− lim

M→∞

1

M
lim
u→0

∂

∂u
lnEZ(x0,wj ,Hij ; s)

u



Matched Decoding: Per-stream Achievable Rate
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• When Hij and Hjj are i.i.d. Gaussian with gains γ̄ij and γ̄jj
and the receiver adapts perfectly to residual self-interference:

Rij

Mi

= ln(1 + ηij) −
ηij

1 + ηij
+

1

αij

[

I

(

αjj , γ̄jjσ
2
j ; 1 +

γ̄ij

1 + ηij

)

− I(αjj , γ̄jjσ
2
j ; 1)

]

for which the fixed-point ηij is found numerically by iterating

ηij =
γ̄ij

αij

[

1

1 +
γ̄ij

1+ηij

−
αii

4γ̄jjσ
2
j

F

( γ̄jjσ
2
j

αii

·
1

1 +
γ̄ij

1+ηij

, αii

)]

and the auxiliary functions are given by

F(x, β) =

(
√

x(1 +
√

β)2 + 1 −

√

x(1 −
√

β)2 + 1

)

2

I(β, σ
2
; t) = ln t + β ln

[

1 +
σ2

tβ
−

1

4
F

(

σ2

tβ
, β

)]

+ ln

[

1 +
σ2

t
−

1

4
F

(

σ2

tβ
, β

)]

−
tβ

4σ2
F

(

σ2

tβ
, β

)

• N.B.: This result is for cancellation only



Mismatched Decoding: Per-stream Achievable Rate

Risto Wichman Bidirectional Full-Duplex MIMO... – 37 / 47

• When Hij and Hjj are i.i.d. Gaussian with gains γ̄ij and γ̄jj
and the receiver postulates imperfectly R̃wj = (1 + γ̄jj σ̃

2
j )IN :

Rij

Mi

= −
s(1 + γ̄jjσ

2
j )

αij(1 + γ̄jj σ̃
2
j + sẼij)

·
sẼij

1 + γ̄jj σ̃
2
j

+ ln

(

1 +
sγ̄ij

αij(1 + γ̄jj σ̃
2
j + sẼij)

)

+
1

αij

ln

(

1 +
sẼij

1 + γ̄jj σ̃
2
j

)

where Ẽij is directly given as

Ẽij =
sγ̄ij − (1 + γ̄jj σ̃

2
j )

2s
−

γ̄ij

2αij

+

√

√

√

√

(1 + γ̄jj σ̃
2
j )γ̄ij

s
+

( sγ̄ij − (1 + γ̄jj σ̃
2
j )

2s
−

γ̄ij

2αij

)

2

⊲ the case of σ̃2
j = 0 is illustrated in the numerical examples

⊲ asymptotic result at large-system limit: Mi → ∞ and Nj → ∞

while Mi
Nj

→ αij for all i, j ∈ {1, 2} (like in the previous slide)

• Optimization is required for the parameter s though, in order to
find more tight lower bounds for the maximum achievable rate



Numerical Examples
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Example Setups
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• The numerical results concentrate on symmetric systems where

⊲ M = M1 = M2

⊲ N = N1 = N2

⊲ γ̄ = γ̄12 = γ̄21
⊲ γ̄I = γ̄11 = γ̄22
⊲ σ2 = σ2

1 = σ2
2

• There may be transmit/receive antenna imbalance (M/N )

⊲ Yet M and N grow asymptotically at the large-system limit

• Choice σ2 = 0.001 corresponds to transmitter EVM of −30 dB (or
equivalently 3.2%) which is a practical but slightly optimistic value

• In summary, there are three key parameters to explore:

γ̄ γ̄I M/N



Achievable Rates vs. SNR (Fig. 2)
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(a) M = 4, N = 8, γ̄I = 33 dB
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(b) M = 4, N = 6, γ̄I = 39 dB

• Simulations (markers) corroborate analytical results (solid lines)
(a) when M/N ≤ 1/2, suppression reduces receive array gain
(b) when M/N > 1/2, suppression reduces multiplexing order



Achievable Rates vs. SNR, Discrete Modulation
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Matched Decoding: Suppression vs. Cancellation [%]
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• Suppression is worse than cancellation if matched decoding
is still feasible under residual self-interference, since such
receivers already comprise ideal interference and noise control



Mismatched Decoding: Suppression vs. Cancellation [%]
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(b) M/N = 2/3

• Transmitter noise and mismatched decoding cause an intricate
interplay between the parameters corresponding to the channel
gains of the data and self-interference links and the antenna ratio



Mismatched Decoding: Switching Boundaries
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• Suppression becomes preferred in wide SNR range when
the number of receive antennas vs. transmit antennas is large

• The level of self-interference is a significant factor at low SNR
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• Achievable rates in bidirectional full-duplex link
• Comparison of spatial suppression and subtractive cancellation

⊲ for characterizing the cost and benefit of allocating a part of
spatial degrees of freedom for self-interference mitigation

⊲ Trade-off between reduced multiplexing order or array gain
and residual self-interference

• Mismatched decoding due to transmitter imperfections
• Analysis at the large-system limit based on the replica method

⊲ Monte Carlo simulations with small number of antennas
match well with the corresponding asymptotic results
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